
Document created by Dilemma 2011

Volvo Motronic M4.3
A detailed description for Motronic 4.3 ECUs used in Volvo 850 T5(R)

Document created by Dilemma 2011

Table of content

Hardware ... - 4 -

Overview of the board .. - 4 -

Main CPU: Siemens SAB 80C517 .. - 5 -

Flash eprom: AP28F512 .. - 6 -

ECU Pinout ... - 7 -

Software ... - 11 -

Software conversion factors ... - 13 -

Software information data ... - 13 -

Reading the code ... - 14 -

Maps and variables ... - 15 -

Getting the lookup table index ... - 15 -

Reading the lookup table .. - 15 -

Validating the entries in the table .. - 16 -

Determining the map data.. - 16 -

Labeling the maps.. - 16 -

Ignition and VE maps ... - 16 -

Boost map .. - 16 -

MAF to load map ... - 17 -

Overboost map .. - 17 -

Finding the engine speed limiters .. - 17 -

Finding the vehicle speed limiter ... - 18 -

How Motronic calculates theoretical engine load .. - 18 -

Communication with the ECU .. - 20 -

Connection diagram .. - 20 -

Normal mode communication.. - 20 -

Wakeup procedure for normal mode .. - 20 -

Normal mode: KWP71 ... - 20 -

Bootmode communication ... - 21 -

Programming sequence .. - 21 -

Boot rom information.. - 23 -

Appendix I: Reverse engineering the binary ... - 24 -

Appendix II: Partnumber and engine information .. - 26 -

Engine code .. - 26 -

Appendix II: Building a high speed K-line interface .. - 27 -

Schematic ... - 27 -

Parts information... - 27 -

Document created by Dilemma 2011

Introduction

This document describes the Motronic M4.3 ECU in detail. It will first describe the hardware and
proceed with a even more detailed description of the software that is running in the ECU so that we can
learn how to tweak and tune the ECU to match the hardware – altered or not – that is on the car better.

Special thanks for getting all this together go out to rkam, T5_Germany, Steve Hayes and others on
ecurproject.com, trionictuning.com and volvospeed.com.

Document created by Dilemma 2011

Hardware

Overview of the board
The ECU contains a tri-layer printed ciruit board (PCB) which holds a lot of SMD components. The main
component are – logically: Main CPU, Flash program storage, SRAM memory (working memory) and a
lot of input/output (I/O).

Document created by Dilemma 2011

Main CPU: Siemens SAB 80C517
 16 Mhz operating frequency
 256 x 8 on-chip RAM
 8k x 8 on-chip ROM for bootloader
 64 Kbyte external data and program memory addressing
 4 x 16-bit timer/counters
 Powerful 16-bit compare/capture unit with 21 x PWM outputs
 Versatile "fail-safe" provisions
 8-bit A/D converter with 12 multiplexed inputs
 Two full duplex serial interfaces
 Nine ports: 56 I/O lines, 12 input lines

Datasheet documents

http://trionic.mobixs.eu/Motronic/M4.3/80c535.pdf

http://trionic.mobixs.eu/Motronic/M4.3/80c517um.pdf

Document created by Dilemma 2011

Flash eprom: AP28F512

Please note that very early M4.3 units has EPROMs in stead of flash chips. The correct number for these
are 27C256. The early ECUs that have EPROMs are labelled “TOMAS”.

Document created by Dilemma 2011

ECU Pinout

Pin number Color Description

A1
A2 Front knock sensor signal
A3 MAF sensor
A4 MAF sensor
A5 MAF sensor
A6
A7 Cooling fan
A8
A9 Fuel injector 5
A10 Fuel injector 1
A11 IAC valve
A12 +12 volt (switched ignition)
A13 Power ground
A14 Front lambda sonde (feed)
A15 Y TPS (out)
A16 G/W TPS (in)
A17 Knock sensor common ground
A18 BR/B Ground (sensor)
A19 Rear lambda sonde (ground)
A20
A21 BL/Y Camshaft position sensor
A22 Cooling fan
A23 Fuel injector 4
A24 Fuel injector 3
A25 IAC valve
A26 +12 volt (battery)
A27 +12 volt (?)
A28 Ground
A29 Rear lambda sonde (feed)
A30 Rear knock sensor signal
A31 Y/GY Engine temperature sensor
A32 Front lambda sonde (signal)
A33 Front lambda sonde (ground)
A34 Rear lambda sonde (signal)
A35 G/Y EGR temparature sensor
A36 Y/R Camshaft position sensor
A37
A38 Fuel injector 2
A39 EVAP valve
A40 EGR converter
A41 Fuel injector relay
A42 Ground
A43

Document created by Dilemma 2011

Pin number Color Description

B1 Vehicle speed sensor (feed)
B2 Automatic transmission control module
B3 Automatic transmission control module
B4 Automatic transmission control module
B5 To diagnostics socket (also to Aut-transmission control module)
B6 GY A/C
B7 Check engine light
B8 Enable internal ECU ROM flashing when +12V is applied (results in +5V on EA

pin on CPU)
B9 A/C Pressure sensor
B10
B11 Ignition system power stage
B12 Automatic transmission control module
B13
B14
B15
B16
B17
B18
B19
B20 Automatic transmission control module
B21 To tacho meter
B22
B23 To engine temperature meter
B24 Automatic transmission control module
B25 BL/GY A/C
B26 Automatic transmission control module
B27 To fuel pump relay
B28 A/C Pressure sensor
B29 A/C Pressure sensor
B30
B31
B32 Vehicle speed sensor (signal)
B33
B34
B35
B36 To diagnostics socket
B37
B38
B39 To trip computer
B40 To A/C relay
B41 Turbo control valve (turbo models only)
B42 Automatic transmission control module
B43

Document created by Dilemma 2011

Document created by Dilemma 2011

Document created by Dilemma 2011

Software

Once we download the data from the ECU – either with a flash programmer or by hooking up a K-line
interface we can load the file into Motronic Suite (ref: http://trionic.mobixs.eu/Motronic/Motronic.msi)

Details on how the software works can be found in appendix I.

We can see the most important maps being automatically detected and we can change them to our
likings. Be careful though, you need to know what you are doing. The software can generate a
differences list between two files as well and if we compare a stock file to a tuned file we can see only a
few maps get edited normally.

Figure 1: differences between stock and tuned maps

Document created by Dilemma 2011

Figure 2: stock boost map

Figure 3: Tuned boost map

Document created by Dilemma 2011

Software conversion factors

The software contains a lot of information for which we have to know the conversion factors to use to
be able to translate them into units that we use on a daily basis. This is a shortlist of the most used
factors.

36 Battery voltage *0.0704 Volt
38 Engine Coolant Temperature (ECT) *1-80 < -50 degrees Celsius
3B Engine speed *40 RPM
40 Internal load signal *0.05 msec
4C Mass Air Flow (MAF) sensor signal *0.01952 Volt
55 Ignition advance *(-0.75)+78 Degrees
BC Turbo duty cycle *0.391

Complete document here: http://trionic.mobixs.eu/Motronic/M4.3/M43-850-scaling.pdf

Software information data

In the software, the identifiers are stored as well about HW revision, SW version, volvo partnumbers etc.
This data is stored in ASCII in the binary file and looks something like this:

In which
0261204134 is the hardware ID
1037358586 is the software ID
9125329 001 is the Volvo partnumber

And there’s more readable information in the file as well:

45/1/M4.3/19/117.50/DAMOS25//2500AE01/040696
In which the latter string is the date of software build.

Document created by Dilemma 2011

Reading the code
To be able to understand the software better we’ll need to dive into the world of assembler language.
This is a sort of intermediate between understandable human language and the operation codes used
by the microprocessor. Once we can read the assembler language (assembly for short) we can track all
the things the microprocessor is told to to when the program is running. This is very valuable
information because we don’t have first hand information from either Bosch or Volvo that can tell us in
details what the ECU does.

We convert the binary file into assembly language we need to disassemble the file. We can do that by
running the disassembler in Motronic Suite, by running the disassembler manually or by using a
seperate program like IDAPro to do it for us. A seperate disassembler can be found here in the website.

Disassembler D52 http://trionic.mobixs.eu/Motronic/M4.3/d52.exe

Once we disassemble the binary file we have an file containing the complete assembly listing in which
we can start to explore and understand the internal workings of M4.3.

Binary example file Volvo 850R: http://trionic.mobixs.eu/Motronic/M4.3/850R.bin

Assembler listing for this file: http://trionic.mobixs.eu/Motronic/M4.3/850R.asm

Document created by Dilemma 2011

Maps and variables

Determining the location and type of maps and variables in the M4.3 binaries is quite a hassle. To be
able to detect the available maps we have to do some tricks and make a couple of assumptions in the
algorithm used. This chapter will describe – in detail – what the Motronic Suite software does to fetch
the maplist from the file.

Getting the lookup table index
First we need to lookup the index in the file at which the lookup table is located. This lookup table
consists of addresses in the file which we can use to determine axis and map information. Do find the
correct index we look for a certain byte sequence in the file. M4.3 has a leading sequence of 4 bytes that
always seem to be the same, 0x00 0x02 0x05 0x07. The picture below shows the data found in a certain
M4.3 file.

Reading the lookup table
The data directly after 0x00 0x02 0x05 0x07 are addresses of axis and maps, 2 bytes at a time. So, the
first address we find is 0xE9F1 and the second one is 0xE9F7. We keep reading addresses and storing
them in a list until we reach a 2 byte value that is smaller than 0xE000 (so, in fact we assume that there
are no maps and axis located in the memory section < 0xE000).

Document created by Dilemma 2011

Validating the entries in the table
Now we have a list of addresses with which we can work. For each address that we found we validate
the data found at that address. For example we will look at the first address we found earlier, 0xE9F1.

The first two bytes tell us a lot. If the symbol is an axis (support point list) the first byte is the identifier
which tells us the type of data it consist of. In this case, the first byte is 0x38 which translates to coolant
temperature. The second byte is the length of the axis, in this case only two bytes. The Motronic Suite
software assumes (thin ice!) that symbols found that start with a value >= 0x03 and <= 0x99 AND that
have a length < 32 are axis symbols. After validating the symbol the software tries to determine any
trailing axis symbol right after the symol that was just validated. In our example it looks at address
0xE9F5 an again validates this offset to be an axis (using the same method). We find identifier 0x80 and
length 0x80 which would not classify this data as being an axis because the length exceeds 32 bytes.

This procedure is done for all addresses found in the lookup table and the software stores the found axis
in a list containing the addresses and the data for the axis.

Determining the map data
What comes next is a little trick: we sort all the axis by address and validate the empty spaces in
between the consequtive axis. If we see a “gap” in between the axis, we assume that there is map data
in between that can be connected to the leading axis information (the axis that comes before the
mapdata in the file). If we find two axis (and X and and Y axis) just before of the mapdata, the map is
assumed to be 3D. If we only find one axis just before the mapdata, we assume the map is 2D.

Labeling the maps
This is possibly the part that has the most assumptions in it. Some maps are determined by their content
and this will not always work, especially when the file has been tuned.

Ignition and VE maps
The ignition and VE map have a fixed length of 256 bytes in which the size is 16x16. Since there are three
different ignition maps and only one VE map it is pretty tough to determine which map is which based
only on their size. So, the content of the 256 bytes maps are evaluated and the map that has a lot of
values around 127 (lambda 1) is said to be the VE map. The other 256 byte maps are the ignition maps in
which the sequence in which they appear in the file (based on the address) determine which ignition
map it is. The first one is the normal ignition map, the second one is the warmup ignition map and the
third and last one is the knock ignition map.

Boost map
The boost map has a length of 128 bytes and since there is only one map in the file with this length it is
pretty easy to label this one and the boost map.

Document created by Dilemma 2011

MAF to load map
The MAF to load conversion map has a length of 64 bytes and the x axis is of type 0x30. Since there is
only one map with these properties it is easy to label it as such.

Overboost map
The overboost map has a length of 64 bytes and the x axis is of type 0x3B. Since there is only one map
with these properties it is easy to label it as the overboost map.

Finding the engine speed limiters
This is actually pretty hard to do, because there’s no indicators as far as I know to determine the exact
location in the file. Obviously something had to be worked out so here is the method used in Motronic
Suite at the moment.

The reversed code shows this piece of code that uses a pointer to the rpm limiter:

code:00000FB5 mov DPTR, #0xE0E8
code:00000FB8 mov A, #4
code:00000FBA cjne A, RAM_3E, code_FC2
code:00000FBD mov A, #0x86
code:00000FBF cjne A, RAM_3D, code_FC2

In hex this looks like:

So we search the file for bytes sequence 0x74 0x04 0xB5 0x3E 0x05 0x74 0x86 0xB5 0x3D 0x00. The two
byte in front of this sequence is the pointer to the RPM limiter.

There also seems to be a second RPM limiter in the file that is located 3 bytes further than the first one.
This one is only 1 byte long and should be multiplied by 40 to get a valid RPM value. This second limiter
is also handled and updated by Motronic Suite.

code:000088FE mov DPTR, #0xE0E8
code:00008901 mov P2, #0x60
code:00008904 mov R0, #0x55
code:00008906 movx A, @R0
code:00008907 mov RAM_2E, A
code:00008909 mov R0, #0x57
code:0000890B mov A, #3
code:0000890D movc A, @A+DPTR
code:0000890E cjne A, ENGINE_SPEED, code_8911

Document created by Dilemma 2011

Finding the vehicle speed limiter
This is actually pretty hard to do, because there’s no indicators as far as I know to determine the

The reversed code shows this piece of code that uses a pointer to the speed limiter:

code:0000496A mov DPTR, #0xE103
code:0000496D clr A
code:0000496E movc A, @A+DPTR
code:0000496F mov B, @R1
code:00004971 cjne A, B, code_4974
code:00004974 code_4974:
code:00004974 mov RAM_2A.0, C
code:00004976 ret

In hex this look like:

So we search the file for byte sequence 0xE4 0x93 0x87 0xF0 0xB5 0xF0 0x00 0x92 0x50 0x22 0x75 0xA0.
The two bytes in front of this sequence is the pointer to the vehicle speed limiter.

How Motronic calculates theoretical engine load
Motronic needs three things to calculate the internal Load signal (which can be found as axis for several
maps):

1. A signal from the airmass meter, normalized to airflow in kg/hr: 푄
2. The current engine speed (rpm): 푛
3. The programmed injector constant: 퐾푖

푄 = 푓(
푈푝
푈푣

)

in which is the ratio between MAF output and MAF reference voltages.

푇푙 =
푄

푛 ∗ 퐾푖

푇푙 (LOAD)is not just a representation of cylinder filling, but the theoretical Injector Time Open (푇푖)
needed to reach stoich (Lambda= 1) with the current injector setup assuming that the motor has an
efficiencey of 100% (VE), which it has not of course. Hence there are fueling tables which are used as
multiplicative corrections to 푇푙 to reach the actual 푇푖.

With 푇푙 quantified, Motronic now takes into account the correction factors for the engine and the
current operating conditions by introducing multiplicative factors to correct the THEORETICAL injector
time to the ACTUAL time for injection (푇푖) needed at that operating condition point. Finally an additive

Document created by Dilemma 2011

factor (푇푣) is added to compensate for the fluctuating injector opening time under lower than nominal
voltages (battery correction map).

푇푖 = (푇푙 ∗ [푋,푌,푍…]) + 푇푣

The final 푇푖 is the injector open time that is applied to the injectors.

Informational credits to: Jim Conforti

Document created by Dilemma 2011

Communication with the ECU

Connection diagram

ECU connector: This is looking at the connector on the ECU

This is the socket-part, connector part is mirrored

There are two methods of communication that can be used with a M4.3 ECU.

 Normal mode communication
 Boot mode communication

Normal mode communication

Normal mode is used for reading data from the ECU while it is in its operational state. Reading live data
and the contents of the flash file are procedures that are carried out in normal mode.
To activate normal mode communication we need to connect a K-line interface to the ECU on pin B5 and
after the wake-up procedure communication can commence at 12700 baud.

Wakeup procedure for normal mode

To be able to communicate in normal mode, the ECU needs to be aware of the fact that there is a
diagnostics device connected to pin B5. To let the ECU know we need to send a 0x10 byte to the port at
5 baud (!). After a correct wakeup byte on the B5 pin we will receive a response from the ECU at 12700
baud. This response will be 0x55 0xAB 0x02 in which the 0x55 is the acknowledge and the 0xAB and
0x02 are the keywords used to communicate with a M4.3 ECU. After reception of this sequence we need
to send an acknowledge message to the ECU which is the inverted last keyword which will be 0xFD.

Normal mode: KWP71

After the wakeup procedure, communication with the ECU takes place in the KWP71 protocol. This
protocol is standarized and therefore it will not be discussed within this document.

Document created by Dilemma 2011

Bootmode communication

Boot mode communication is only useful for flashing the ECU with a new firmware version. This is a
special mode which is indicated to the ECU by pulling pin B8 to +12V before the ECU starts (boots). So,
you will need to have the ECU powered down and apply +12V to B8 before the ECU is powered on. The
ECU will now run a special boot loader program which resides in internal ROM and allows us to
reprogram the ECU. After starting in bootmode communication can commence on pin B5 at 9600 baud
with a K-line interface.

A correctly formatted command line should result in an acknowledge (ACK)
0x02 0x30 0x59 0x30 0x37 0x03 0x62
Wrong commands result in a negative acknowledge (NACK)
0x02 0x30 0x59 0x30 0x38 0x03 0x62

Programming sequence

The programming sequence for M4.3 looks like any other ordinary reflash sequence.

 Establish and verify communication with the ECU
 Erase the flash chip
 Program the flash chip
 Verify sequence and disconnect

Verifying communication

To verify a valid connection between application and ECU a dummy command is issued on the serial
port. Send some valid sequence like 0x3A 0x00 0x00 0x00 0x00 0x00 0x00 0x00
This should result in an ACK returned from the ECU.
The 8-bit sum of the numbers behind 0x3A should always be 0x00, this functions as a checksum.

Erase the flash chip

To erase the flash we need to send command 0x01 with a valid keycode for access to the ECU. The
access code is 0x11 0x22 0x33 0x44 0x55. The final command for erasing the flash is:
0x3A 0x01 0x11 0x22 0x33 0x44 0x55
Since erasing the flash takes some time and the application controlling the ECU should not freeze and
should be able to deliver some feedback to the user the ECU delivers two responses to this message,
one is issued when it starts to erase the flash and one is issued after the erase procedure has finished.
Start erase: 0x02 0x30 0x59 0x30 0x39 0x03 0x62
Finished erase: 0x02 0x30 0x59 0x30 0x35 0x03 0x62

Document created by Dilemma 2011

Program the flash chip

After erasing the flash we have to send the byte sequences to program the flash with new values. This is
actually the new binary file that we are sending to the bootloader so it can program this into the erased
flash. Since we cannot send the entire binary file at once (because of limits to the receive buffer in the
ECU) we have to send small blocks of data at a time and repeat this procedure until all data is processed.

Each command contains up 32 bytes of data to be programmed and the address it should be
programmed at in the flash.

0x3A 0x20 0xaddr1 0xaddr2 0xaddr3 [32 bytes of program] [checksum, 1 byte]

A typical sequence would be (0x indicators are omitted here for easier reading, all data is in hex though)

3A 20 00 00 00 02 7D 44 02 2A DE FF FF FF FF FF 02 2A E6 FF FF FF FF FF 05 17 32 FF FF FF FF FF 02 1D 97 FF FF 0E

command 3A 20
address 00 00 00
data 02 7D 44 02 2A DE FF FF FF FF FF 02 2A E6 FF FF FF FF FF 05 17 32 FF FF FF FF FF 02 1D 97 FF FF
checksum 0E

Please note that the address bytes are structured a bit odd. The file is 0xFFFF bytes long so normally we
would assume that the address in the command would range from 00 00 00 upto 00 FF FF but this is not
the case. We need to have the high order by in addr1 and the low order by in addr2, while we keep
addr3 filled with 0x00. Programming at position 0xCAE0 would yield a command that starts with

3A 20 CA E0 00

Verify sequence and disconnect

After we have send all the data containing the new binary to the ECU we need to make sure that the
ECU understood what we send and if it succeeded in programming the flash chip. This is important
because the timing of the programming sequence is key and there might be disturbances when windows
tries to do silly things.

To verify the operation we send these two commands and we wait for a response from the ECU.

3A0000000000

3A30303030303030314646

If the response is
02 30 59 30 34 03 xx we have a positive indication from the ECU.
If the response is some other command like
02 31 59 30 31 03 xx or
02 31 59 30 38 03 xx we have a negative indication from the ECU and we should retry programming.

Document created by Dilemma 2011

Boot rom information

The bootrom can be download here: http://trionic.mobixs.eu/Motronic/M4.3/M43_rom.bin
And the corresponding assembly listing: http://trionic.mobixs.eu/Motronic/M4.3/bootrom.asm

This is given for reference only so you can explore the bootrom on you own.

Document created by Dilemma 2011

Appendix I: Reverse engineering the binary

The Motronic 4.3 binary files are not extremely hard to reverse engineer. The 8051 based processor in it
means that there are several freeware disassemblers available to work with. The thoughest part is to
extract all the map and axis information from the file and to automatically determine which map means
what. Currently all maps are extracted and some are named by the software in the extraction process
like the ignition, main fuelling and boost maps.

The extraction process works as follows.

1. We look through the file for sequence 0x00 0x02 0x05 0x07
2. After that we read 2 bytes at the time as integer 0xED 0x4C = 0xED4C = 60748 which is an axis

address in the file. We do this until the first read byte is smaller than 0xE0.
3. We now have a first list of addresses to process. For each found address we read two bytes at

that particular address in the file. For the given example fo address 0xED4C we would read f.e.:
0x04 0x0C. The first byte is the identifier (which type of data it concerns) and the second byte is
the length of the data for this axis. So, we have identifier 0x04 and length 0x0C. Now we
continue to read 0x0C (=12) bytes from the current location in the file. We read f.e. 0x07 0x0D
0x14 0x1B 0x1F 0x20 0x1C 0x17 0x12 0x0D 0x0A 0x18.

4. Motronic 4.3 has coded axis values, so we need to decode this information to get to the “real”
values that correspond to units we use every day. This decoding is done as follows. We take the
last value in the list (0x18) and calculate the maximum axis value with this formula: (256 –
last_value) * correction factor. The correction factor for axis with ID 0x04 is 1 (ref: correction
factor document), so the maximum value would turn out to be 256 – 0x18 = 256 – 24 = 232.
Next we take the second to last value from the list (0x0A). The real value is again calculated as
follow previous_real_value – (value * correction factor). This results in 232 – (0x0A * 1) = 232 –
10 = 222. The next values are calculated in the same way. The next value is 0x0D which means
222 – (0x0D * 1) = 222 – 12 = 210. We calculate all values in the list like this and we end up with:

a. 256 – 0x18 = 256 – 24 = 232
b. 232 – (0x0A * 1) = 232 – 10 = 222
c. 222 – (0x0D * 1) = 222 – 12 = 210
d. 210 – (0x12 * 1) = 210 – 18 = 192
e. 192 – (0x17 * 1) = 192 – 23 = 169
f. 169 – (0x1C * 1) = 169 – 28 = 141
g. 141 – (0x20 * 1) = 141 – 32 = 109
h. 109 – (0x1F * 1) = 109 – 31 = 78
i. 78 – (0x1B * 1) = 78 – 27 = 51
j. 51 – (0x14 * 1) = 51 – 20 = 31
k. 31 – (0x0D * 1) = 31 – 12 = 19
l. 19 – (0x07 * 1) = 19 – 7 = 12

Our calculated axis now results in: 12 19 31 51 78 109 141 169 192 210 222 232

Document created by Dilemma 2011

5. We now also – for the sake of understanding – also calculate an axis the has the load value
(which is calculated in ms in Motronic) as identifier (0x40). M4.3 has a correction factor of 0.05
for this axis. We read 0x40 for ID and 0x10 for length. The data is 0x07 0x07 0x08 0x08 0x0A
0x0A 0x0A 0x0A 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D 0x55. Now we calculate in the same way
as in point 4.

a. 256 – 0x55 = 256 – 85 = 171 * 0.05 = 8.55
b. 8.55 – (0x0D * 0.05) = 8.55 – 0.65 = 7.90
c. 7.90 – (0x0D * 0.05) = 7.90 – 0.65 = 7.25
d. 7.25 – (0x0D * 0.05) = 7.25 – 0.65 = 6.60
e. 6.60 – (0x0D * 0.05) = 6.60 – 0.65 = 5.95
f. 5.95 – (0x0D * 0.05) = 5.95 – 0.65 = 5.30
g. 5.30 – (0x0D * 0.05) = 5.30 – 0.65 = 4.65
h. 4.65 – (0x0D * 0.05) = 4.65 – 0.65 = 4.00
i. 4.00 – (0x0A * 0.05) = 4.00 – 0.50 = 3.50
j. 3.50 – (0x0A * 0.05) = 3.50 – 0.50 = 3.00
k. 3.00 – (0x0A * 0.05) = 3.00 – 0.50 = 2.50
l. 2.50 – (0x0A * 0.05) = 2.50 – 0.50 = 2.00
m. 2.00 – (0x08 * 0.05) = 2.00 – 0.40 = 1.60
n. 1.60 – (0x08 * 0.05) = 1.60 – 0.40 = 1.20
o. 1.20 – (0x07 * 0.05) = 1.60 – 0.35 = 0.85
p. 0.85 – (0x07 * 0.05) = 0.85 – 0.35 = 0.50

So, our final axis is this:

0.50 0.85 1.20 1.60 2.00 2.50 3.00 3.50 4.00 4.65 5.30 5.95 6.60 7.25 7.90 8.55

Document created by Dilemma 2011

Appendix II: Partnumber and engine information

The ECU partnumbers and engine code information is important when starting your tune. This appendix
will give you handles on where to start.

Engine code

ECU partnumber Car model MY
0 261 203 074 850 2.3 T5 Automatic 1994-1995
0 261 200 549 850 2.3 T5 Manual 1994-1995
0 261 203 627 850 T5R Automatic (Euro spec) 1995-1996
0 261 203 628 850 T5R Automatic (US spec)
0 261 203 626 850 T5R Manual 1995-1996
0 261 204 134 850R Automatic 1996-1997
0 261 204 225 850R Manual 1996-1997
0 261 203 852 850 2.3 T5 Automatic 1996-1997
0 261 203 851 850 2.3 T5 Manual 1996-1997
0 261 203 962 850 2.0 T5 Automatic
0 261 203 189 850 2.0 GLT Automatic

Document created by Dilemma 2011

Appendix II: Building a high speed K-line interface

The following information is sourced from skpang.co.uk.

Schematic

Parts information

Figure 4: MAX232 and MC33290

